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We investigate methods for filtering reaction mechanisms in the angular scattering of the state-to-state reaction,
H + D2(Vi ) 0, ji ) 0, mi ) 0) f HD(Vf ) 3, jf ) 0, mf ) 0) + D, where Vi, ji, and mi and Vf, jf, and mf are
initial and final vibrational, rotational, and helicity quantum numbers, respectively. The input to our filtrations
is a new set of accurate quantum scattering matrix elements for total energies in the range 1.52-2.50 eV (in
steps of 0.01 eV) and for total angular momentum quantum numbers in the range, 0-40, in steps of unity.
We filter reaction mechanisms in both the energy domain and the time domain. The time-domain calculations
employ the plane wave packet formulation of time-dependent scattering. The theoretical tools used are
nearside-farside (NF) analysis of partial wave series for scattering amplitudes, together with NF local angular
momentum (LAM) theory. An energy-domain LAM analysis reveals the existence of an important dynamical
feature in the N scattering, a “trench” which bisects the (energy, angle) plane. We use the location of this
trench to approximately filter two reaction mechanisms. Transformation to the time domain demonstrates
that the two reaction mechanisms correspond to direct and delayed (by about 25 fs) scattering. Further analysis,
including filtration in the time domain, shows that the pronounced LAM trench arises from the interference
of the energy-domain analogues of the time-direct and time-delayed scattering. Our theory and results provide
the first successful demonstration of reaction mechanism filtering carried out directly in the (energy, angle)
domain. The calculations and results in this paper extend and complement earlier research reported by Monks,
Connor, and Althorpe (Monks, P. D. D.; Connor, J. N. L.; Althorpe, S. C. J. Phys. Chem. A 2006, 110, 741;
J. Phys. Chem. A 2007, 111, 10302).

1. Introduction

This paper is the third in a series1,2 using nearside-farside
(NF) theory and local angular momentum (LAM) theory to
understand the dynamics of the state-to-state reaction

where Vi, ji, and mi and Vf, jf, and mf are vibrational, rotational,
and helicity quantum numbers for the initial and final states,
respectively. We are studying the H + D2 collision system
because it is a benchmark reaction1-13 that exhibits interesting
scattering dynamics. It has been extensively researched in
experiments and by theory during the past few years.1,2,12-22

In our first paper,1 we studied the time-dependent dynamics
of the H + D2 reaction because it has the interesting property
that two reaction mechanisms are present: one time direct, the
other time delayed (by about 25 fs). The theoretical techniques
used in ref 1 were a general Plane WaVe Packet (PWP) theory of
molecular scattering1,23-32 (reviewed in refs 30 and 31), together
with a NF decomposition1,2,33-57 (reviewed in refs 11 and 57-59)
of the time dependent scattering amplitude. Other recent applica-

tions of NF theory are given in refs 15, 16, and 60-76. We also
used the related NF concept of a LAM.1,2,49,50,52,55-57,68 In addition,
ref 1 introduced the novel concepts of a cumulative time-
evolving differential cross section and a cumulative energy-
evolving angular distribution.

Our second paper2 reported NF and LAM analyses of the
time-independent (energy-domain) scattering amplitude over a
range of total energies. We also resummed the partial wave
series for the scattering amplitude up to three times before
making the NF decomposition and showed that such resum-
mations usually provide an improved physical understanding
of the NF differential cross sections.

The purpose of this paper is to extend the work in refs 1 and
2 in a different direction by using NF and LAM theory to filter
reaction mechanisms in the angular scattering of the H + D2

reaction. The quantum filtration procedure proposed in refs
23-26, and 32 is the following: The PWP angular distri-
bution in the time-domain is examined and in favorable cases
two reaction mechanisms may be seen, e.g., direct and delayed
scattering. These mechanisms can be approximately separated
with the help of filters defined by a curve which cuts the (time,
angle) plane. An (inverse-) Fourier transformation of the separate
(filtered) mechanisms into the energy domain then allows the
analogues of the two time-domain mechanisms to be identified
and studied in the (energy, angle) plane. This filtration procedure
has been applied to the H + D2f HD + D,23,24 F + HDf FH† Part of the “George C. Schatz Festschrift”.

H + D2(Vi ) 0, ji ) 0, mi ) 0) f HD(Vf ) 3, jf )
0, mf ) 0) + D
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+ D,25,26 and He + H2
+ f HeH+ + H reactions.32 The last

reaction32 also combined filtering with a simple asymptotic
version of NF theory.43

In this paper, we show that the analogues of the direct and
delayed mechanisms can be identified directly in the energy
domain, without first going into the time domain. This is possible
because an energy-domain LAM analysis reveals the existence
of an important dynamical feature in the N scattering: a “trench”
which bisects the (energy, angle) plane. We use the location of
this trench to design a filter that approximately separates the
two reaction mechanisms. Fourier transformation to the time
domain confirms that the two reaction mechanisms indeed
correspond to direct and delayed scattering.

Section 2 describes the necessary NF and LAM theories
needed for our computations in the energy and time domains.
We also discuss how to obtain filtered time-domain subampli-
tudes from the bisected energy-domain scattering amplitude (and
vice versa).

The input to our calculations is a new set of accurate quantum
scattering matrix elements for total energies in the range
1.52-2.50 eV (in steps of 0.01 eV) and for total angular
momentum quantum numbers in the range 0-40, in steps of
unity.19 Note that we measure the total energy with respect to
the asymptotic energy of the system where D2 is at its
equilibrium geometry in its ground electronic state and H is at
an infinite distance from D2 (i.e., the total energy is measured
from the classical minimum of the D2 potential energy curve).
The computations for the scattering matrix are briefly described
in section 3, together with the filters that we use to ap-
proximately separate the reaction mechanisms.

Our results are presented in section 4. We first examine the
full and NF differential cross sections and LAMs in the energy
domain. Second, we Fourier transform to the time domain,
where we introduce filters and a cut curve which bisects the
(time, angle) plane. Third, we make a detailed study in the
energy domain of the analogues of the time-direct and time-
delayed mechanisms and show that the LAM trench arises from
the interference of these two mechanisms. Our conclusions are
in section 5.

This paper together with refs 1 and 2 use a consistent set of
notations and conventions. In particular, throughout the present
paper, we use the notation w ) x(y)z to mean increment w in
steps of y, starting from w ) x and finishing at w ) z.

2. Theoretical Methods

A. Energy-Domain Scattering Amplitude, Nearside-
Farside Decomposition and Local Angular Momentum. We
begin with the energy-domain scattering amplitude, f(θR,E),
where E is the total energy and θR is the reactive scattering
angle, i.e., the angle between the outgoing HD molecule and
the incoming H atom. We can expand f(θR,E) in a basis set of
Legendre polynomials, since the initial and final helicity
quantum numbers are both zero for the present state-to-state
reaction. We write for the partial wave series (PWS)

where k(E) is the initial translational wavenumber, J is the total
angular momentum quantum number, S̃J(E) is a modified
energy-dependent scattering matrix element, and PJ(b) is a
Legendre polynomial of degree J. Note that initial- and final-
state labels have been omitted from eq 1, and in the following,

for simplicity of notation. The corresponding differential cross
section (DCS) is given by

We next decompose f(θR,E) into the sum of two subampli-
tudes using the Fuller NF procedure77

where the N and F subamplitudes are, for θR * 0,π

with QJ
(-)(b) defined by the linear combinations (θR * 0,π)

and QJ(b) is a Legendre function of the second kind of degree
J. The corresponding NF DCSs are obtained from (θR * 0,π)

In many cases, graphs of σ(θR,E) display complicated
behavior when plotted against θR (at fixed E). In this situation,
plots of σN,F(θR,E) versus θR often exhibit simpler behavior,
which can help us understand the dynamics of the reaction. In
particular, we can interpret structure in a plot of σ(θR,E) versus
θR as arising from the N contribution to f(θRE) or from the F
contribution or from interference between the N and F
subamplitudes.

The local angular momentum is defined by the equation49,50,52

where the arg is not necessarily the principal value in order
that the derivative be well-defined. LAM is measured in units
of p; in the semiclassical limit, it contains information on the
total angular momentum that contributes to the scattering at the
angle θR. The LAM is a real (positive or negative) number and
is not confined to integer values. Positive values of LAM(θR,E)
result from the anticlockwise motion of arg f(θR,E) as θR

increases and usually correspond to attractive forces. Similarly,
negative values result from the clockwise motion of arg f(θR,E)
as θR increases, which usually correspond to repulsive forces.
These two types of behavior are usually attributable to F and N
contributions, respectively.

N and F LAMs can also be defined and are given by49,50,52

B. Time-Domain Scattering Amplitude and Nearside-
Farside Decomposition. This section presents the equations
from the PWP theory of time-dependent scattering needed for

f(θR, E) ) 1
2ik(E) ∑J)0

∞

(2J + 1)S̃J(E)PJ(cos θR) (1)

σ(θR, E) ) |f(θR, E)|2 (2)

f(θR, E) ) fN(θR, E) + fF(θR, E) (3)

fN,F(θR, E) ) 1
2ik(E) ∑J)0

∞

(2J + 1)S̃J(E)QJ
(-)(cos θR) (4)

QJ
(-)(cos θR) ) 1

2[PJ(cos θR) ( 2i
π

QJ(cos θR)] (5)

σN,F(θR, E) ) |fN,F(θR, E)|2 (6)

LAM(θR, E) )
∂ arg f(θR, E)

∂θR
(7)

LAMN,F(θR, E) )
∂ arg fN,F(θR, E)

∂θR
(8)
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our calculations in section 3. We define a time-dependent
scattering amplitude, f(θR,t), where t is the time, by the half-
Fourier transform1,28,29

In eq 9, F(E) is a dimensionless complex-valued energy filter
function,1,28,29 which is chosen to extract interesting information
from f(θR,E) and map it to the time domain as described by
f(θR,t). We use a filter function in section 3 that has the property
F(E) f 0 as E f ∞. Note that ref 26 has introduced a more
general filter which also depends on J.

We choose t ) 0 in the integral (9) as a time before H and
D2 have interacted. We can then assume f(θR,t) ≡ 0 for t < 0.
As t f ∞ we will have f(θR,t) f 0 by the Riemann-Lebesgue
Lemma because the exponential factor in the integrand of eq 9
will oscillate faster and faster (assuming F(E) and f(θR,E) are
well behaved). Thus f(θR,t) will only be significantly different
from zero for 0 < t < tmax, where tmax is a time at which the
reaction is over and HD and D are no longer interacting.

We also define

by analogy with the DCS, eq 2. We will call σ(θR,t) a “time-
dependent angular distribution” or a “time-dependent scattering
pattern” rather than a “time-dependent differential cross section”
since σ(θR,t) has dimensions of length2 × energy2 rather than
length2.

The inverse Fourier transform of eq 9 is

Notice that we employ the same symbol f for the different
functions f(θR,E) and f(θR,t) and use their differing arguments
to distinguish them. This convention is also adopted for other
physical quantities in the energy and time domains in order to
keep the notation simple.

We can make a partial wave expansion for f(θR,t) by
writing1,28,29

where S̃J(t) is a modified time-dependent scattering matrix
element. Substituting eqs 1 and 12 into eq 9 leads to

The inverse Fourier transformation of eq 13 is

We can also make a NF decomposition of f(θR,t) in order to
better understand structure seen in σ(θR,t) when it is plotted
versus θR at fixed values of t. By analogy with eqs 3-6, the
NF decomposition of f(θR,t) is written1

where the NF time-dependent subamplitudes are (θR * 0,π)

and the corresponding NF time-dependent angular distributions
are (θR * 0,π)

In addition, we can also define full and N,F LAMs in the time
domain1 by analogy with eqs 7 and 8; however they are not
used in the present paper.

C. Obtaining Filtered Time-Domain Subamplitudes from
the Energy-Domain Scattering Amplitude. We begin by
examining the properties of σ(θR,E) where E is the total energy.
We show in Figure 1 a contour plot of σ(θR,E) using accurate
quantum scattering matrix elements for the H + D2 reaction
with 0 e θR/deg e 180 and 1.52 e E/eV e 2.50, where we
have anticipated our results in section 4. We wish to cut the
(θR,E) plane by a curve that approximately separates (filters)
two reaction mechanisms, these being the energy-domain
analogues of the time-direct and time-delayed mechanisms.
Typically the direct mechanism arises from low impact param-
eter collisions in which H recoils backward after abstracting a
D atom, while the delayed mechanism is mainly caused by larger
impact parameter collisions which allow the HDD complex to
rotate and decay into the forward direction. A possible cut-
curve is drawn in red in Figure 1, where it is superimposed on
the contour plot of σ(θR,E). We denote a cut-curve in the energy-
domain by CCE.

Our aim is to decompose f(θR,E) into the sum of two
subamplitudes:

One for the energy-domain analogue of the time-direct
scattering, denoted fdir(θR,E), which will mainly lie to the right
of CCE in Figure 1.

One for the energy-domain analogue of the time-delayed
scattering, denoted fdel(θR,E), which will mainly lie to the left
of CCE in Figure 1.

Remark: We could develop the theory using the more general
labels “mechanism A” in place of “direct”, and “mechanism
B” in place of “delayed”. However it is convenient to anticipate
our results from section 4.

We can now make the decomposition

We obtain the subamplitudes, fdir,del(θR,E), by applying filter
functions, �dir,del(θR,E) to f(θR,E), which overlap on the cut-curve,

f(θR, t) ) ∫0

∞
F(E)f(θR, E) exp(-iEt/p) dE (9)

n.b., dimensions ) length × energy

σ(θR, t) ) |f(θR, t)|2 (10)

f(θR, E) ) 1
2πpF(E) ∫0

∞
f(θR, t) exp(iEt/p) dt (11)

n.b., dimensions ) length

f(θR, t) ) 1
2i ∑J)0

∞

(2J + 1)S̃J(t)PJ(cos θR) (12)

S̃J(t) ) ∫0

∞ F(E)
k(E)

S̃J(E) exp(-iEt/p) dE (13)

n.b, dimensions ) length × energy

S̃J(E) ) 1
2πp

k(E)
F(E) ∫0

∞
S̃J(t)exp(iEt/p) dt (14)

f(θR, t) ) fN(θR, t) + fF(θR, t) (15)

fN,F(θR, t) ) 1
2i ∑J)0

∞

(2J + 1)S̃J(t)QJ
(-)(cos θR) (16)

σN,F(θR, t) ) |fN,F(θR, t)|2 (17)

f(θR, E) ) f dir(θR, E) + f del(θR, E) (18)
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together with a simple partition of unity, �dir(θR,E) + �del(θR,E)
) 1. Specifically we have

and

The form of �del(θR,E) is discussed in detail in section 3B, but
its general properties at a fixed value of θR are �del(θR,E) f 1
as E f Ethreshold (the threshold energy for the stated-to-state
reaction) and �del(θR,E) f 0 as E f ∞.

Next we operate with the half-Fourier transform of eq 9 on
the f dir,del(θR,E). The results of this operation are two filtered
time-dependent subamplitudes, f dir(θR,t) and f del(θR,t), which
approximately represent the time-direct and time-delayed mech-
anisms, respectively. They are defined by

The same operations described by eqs 18-21 can also be
applied to the N and F subamplitudes fN,F(θR,E), resulting in
the sub-subamplitudes, fN,F

dir(θR,t) and fN,F
del(θR,t). In more detail

and

where the fN,F
dir,del(θR,E) are defined by analogy with eqs 19

and 20, i.e.

and

Having defined the filtered time-dependent subamplitudes,
f dir,del(θR,t) by eq 21, we can calculate filtered time-dependent
angular distributions by

We can also define NF filtered time-dependent angular
distributions by

Some, or all, of these filtered time-dependent angular distribu-
tions may be used to help separate the time-direct and time-
delayed mechanisms in the time domain. This approach allows
us to remove some of the ambiguity for finding a boundary, or
cut-curve, between the direct and delayed mechanisms in the
time domain. Our results using this approach are described in
section 4.

We will call the filtration described in this section as “CCE

filtering” for brevity.
D. Obtaining Filtered Energy-Domain Subamplitudes

from the Time-Domain Scattering Amplitude. We now
consider the reverse process to that described in section 2C.
Suppose a suitable cut-curve has been found within the time
domain, i.e., a curve that cuts the (θR,t) plane and which
approximately separates the direct and delayed mechanisms. We
denote such a curve by CCT; an example is shown in red in
Figure 2 for the H + D2 reaction, again anticipating our results
in section 4. CCT has been superimposed on a contour plot of
σ(θR,t) for 0 e θR/deg e 180 and 0 e t/fs e 123. Note that the
time-direct scattering will lie mainly to the left of CCT in Figure
2 (i.e., at shorter times) while the time-delayed scattering is
found mainly to the right (i.e., at longer times); this is clearly
visible in the PWP movie of the time evolution of the reaction
reported in refs 23 and 24. Other reactions also exhibit direct
and delayed scattering, for example, F + HD f FH + D25,26

and He + H2
+ f HeH+ + H.32

We decompose f(θR,t) into direct and delayed subamplitudes

where the overbars are to distinguish the fj dir,del(θR,t) defined
using CCT from the subamplitudes, f dir,del(θR,t), introduced in
section 2C using CCE filtering; see eq 21. The fj dir,del(θR,t) are
defined by applying overlapping filter functions, �dir,del(θR,t),
along CCT together with a partition of unity. We have

and

Figure 1. Contour plot of σ(θR,E). The values of the seven contours
are 0.000025 (0.000025) 0.000175 Å2 sr-1. The red curve, called CCE

in the text, indicates the location of the center of the trench in the (θR,E)
plane seen in Figures 5b and 6. CCE is not a contour and approximately
separates the energy-domain analogues of the time-direct and time-
delayed scattering, which are denoted “direct” and “delayed”, respectively.

f del(θR, E) ) �del(θR, E)f(θR, E) (19)

f dir(θR, E) ) �dir(θR, E)f(θR, E) ) [1 - �del(θR, E)]f(θR, E)
(20)

f dir,del(θR, t) ) ∫0

∞
F(E)f dir,del(θR, E) exp(-iEt/p) dE

(21)

fN,F(θR, E) ) fN,F
dir(θR, E) + fN,F

del(θR, E) (22)

fN,F
dir,del(θR, t) ) ∫0

∞
F(E)fN,F

dir,del(θR, E) exp(-iEt/p) dE

(23)

fN,F
del(θR, E) ) �del(θR, E)fN,F(θR, E) (24)

fN,F
dir(θR, E) ) �dir(θR, E)fN,F(θR, E) )

[1 - �del(θR, E)]fN,F(θR, E) (25)

σdir,del(θR, t) ) |f dir,del(θR, t)|2 (26)

σN,F
dir,del(θR, t) ) |fN,F

dir,del(θR, t)|2 (27)

f(θR, t) ) fjdir(θR, t) + fjdel(θR, t) (28)

fjdel(θR, t) ) �del(θR, t)f(θR, t) ) [1 - �dir(θR, t)]f(θR, t)
(29)
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Note that �dir(θR,t) f 1 as tf 0 and �dir(θR,t) f 0 as t f ∞
at a fixed value of θR.

In a similar way to section 2C, we can also decompose the N,F
subamplitudes, fN,F(θR,t), into direct and delayed sub-subamplitudes

where

and

Overbars are again added to the fjN,F
dir,del(θR,t) to distinguish

them from the fN,F
dir,del(θR,t) sub-subamplitudes defined by eq

23, which use CCE filtering.
We next apply the inverse half-Fourier transform (11) to

fj dir,del(θR,t) and fjN,F
dir(θR,t). This operation will provide us with

filtered fj dir,del(θR,E) and fjN,F
dir,del(θR,E), respectively, where we

use an overbar to distinguish them from eqs 18-21 and eqs
22-25, respectively. In particular we have

and

Filtered energy-domain DCSs can now be defined by

and

We can also define direct and delayed N,F LAMs by

In sections 4E and 4F we will use eqs 37 and 38 to study the
effect that the CCT filtration of fN(θR,t) has on the properties of
LAMN(θR,E), and discuss its behavior in terms of the interfering
sub-subamplitudes fjN

dir(θR,E) and fjN
del(θR,E).

We will call the filtration described in this section as “CCT

filtering” for brevity.

Identities. It is also convenient to extend the theory just
presented by defining

and

together with

and

Then because a Fourier transform and its inverse are linear
operations, we have the identities

and

However, in practice, the right-hand sides may differ from the
corresponding left-hand sides, because of inevitable numerical
errors that arise when the Fourier transforms and their inverses
are performed. In this situation, comparing the right- and left-
hand sides of eqs 45-50 provides a valuable check on the
accuracy of the numerical calculations.

3. Calculations

A. Reactive Scattering Matrix Calculations. We use as
input to our NF and LAM analyses, a set of accurate quantum
scattering matrix elements, {S̃J(E)} for J ) 0 (1) 40 with {S̃J(E)
≡ 0} for J > 40, on the energy grid, E ) 1.52 (0.01) 2.50 eV.
These matrix elements are the results of new wave packet
scattering calculations19 performed for the indistinguishable

fjdir(θR, t) ) �dir(θR, t)f(θR, t) (30)

fN,F(θR, t) ) fjN,F
dir(θR, t) + fjN,F

del(θR, t) (31)

fjN,F
del(θR, t) ) �del(θR, t)fN,F(θR, t) )

[1 - �dir(θR, t)]fN,F(θR, t) (32)

fjN,F
dir(θR, t) ) �dir(θR, t)fN,F(θR, t) (33)

fjdir,del(θR, E) ) 1
2πpF(E) ∫0

∞
fjdir,del(θR, t) exp(iEt/p) dt

(34)

fjN,F
dir,del(θR, E) ) 1

2πpF(E) ∫0

∞
fjN,F

dir,del(θR, t) exp(iEt/p) dt

(35)

σ̄dir,del(θR, E) ) | fjdir,del(θR, E)|2 (36)

σ̄N,F
dir,del(θR, E) ) | fjN,F

dir,del(θR, E)|2 (37)

LAMN,F
dir,del(θR, E) )

∂ arg fjN,F
dir,del(θR, E)

∂θR
(38)

fj(θR, E) ) fjdir(θR, E) + fjdel(θR, E) (39)

fjN,F(θR, E) ) fjN,F
dir(θR, E) + fjN,F

del(θR, E) (40)

σ̄(θR, E) ) | fj(θR, E)|2 (41)

LAM(θR, E) )
∂ arg fj(θR, E)

∂θR
(42)

σ̄N,F(θR, E) ) | fjN,F(θR, E)|2 (43)

LAMN,F(θR, E) )
∂ arg fjN,F(θR, E)

∂θR
(44)

f(θR, E) ≡ fj(θR, E) (45)

σ(θR, E) ≡ σ̄(θR, E) (46)

LAM(θR, E) ≡ LAM(θR, E) (47)

fN,F(θR, E) ≡ fjN,F(θR, E) (48)

σN,F(θR, E) ≡ σ̄N,F(θR, E) (49)

LAMN,F(θR, E) ≡ LAMN,F(θR, E) (50)
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state-to-state H + D2 reaction, using the potential energy surface
number 2 of Boothroyd et al.78 with masses of mH ) 1.008 u
and mD ) 2.014 u. The total energy, E, is measured with respect
to the classical minimum of the D2 potential energy curve. This
new set of {S̃J(E)} gives us better converged values for f(θR,E)
at high E. (The previous calculations had J ) 0 (1) 30 and used
a smaller basis set.)

Note that the state-to-state reaction is closed for E < Ethreshold

) 1.520 eV, since the rovibrational energy, E(Vi,ji), of
D2(Vi)0,ji)0) is 0.192 eV and the rovibrational energy, E(Vf,jf),
of HD(Vf)3,jf)0) is 1.520 eV.

B. Filter Functions. The PWP calculations used the same
filter function, F(E), as employed previously in ref 1. It is given
by

In eq 51, ki(E) and kf(E) are the initial and final translational
wavenumbers, respectively, defined by ks(E) ) {2 µX,YZ[E -
E(Vs,js)]}1/2/p with s ) i, f, where µX,YZ ) mX(mY + mZ)/(mX +
mY + mZ) is the reduced mass of the X + YZ channel. The
distance zi localizes the center of the initial PWP on the z axis
with a width determined by |F(E)|. We used the value zi ) -6
a0. Similarly we set zf ) +6 a0, which distributes the centers
of the probe PWPs around a sphere of radius 6 a0 in the final
channel. Finally, g(E) is a distributed approximating function(al)
(DAF)79 defined by

where

with parameters of M ) 88, E0 ) 1.65 eV, and σ ) 1/0.07
eV-1 (n.b., σ is not related to the integral cross section). A plot
of g(E) is shown in Figure 3 for the set of parameters used in
the filter function, �del(θR,E), whose definition is considered next.

Equation 19 shows that the filter �del(θR,E) is applied to
f(θR,E) to produce fdel(θR,E). We denote the coordinates of CCE

in Figure 1 by (θR,Ecut(θR)). Then to filter the delayed mecha-

nism out of f(θR,E), we use the DAF, g(E), with parameters of
M ) 2000, E0 ) 1.90 eV and σ ) 100 eV-1. Figure 3 shows
a plot of g(E) for these parameters. In addition, we require that
the high E shoulder side of g(E) takes the value 0.5 on the cut-
curve, E ) Ecut(θR), at each value of θR, i.e.

This is achieved by adjusting the value of E0 ) E0(θR) in eq 53
(keeping σ fixed) until eq 54 is satisfied. For example, for the
cut-curve drawn in red in Figure 1, we used E0(θR) ) Ecut(θR)
- 0.44736 eV. It is also necessary to check that �del(θR,E) ) 1
at low values of θR and E; if not, a correction is made.

The filter function, �dir(θR,t), in the time domain, which is
used to filter f(θR,t) in eq 30 is defined by analogy with eqs 52
and 53. Thus we first define the DAF

where

with parameters of M ) 88 and F ) 0.2092 fs-1. We denote
the coordinates of the cut-curve, CCT, in the time domain by
(θR,tcut(θR))ssee the red curve in Figure 2. By analogy with
�del(θR,E), we require that �dir(θR,t) is equal to 0.5 on CCT. This
is achieved by adjusting the value of t0 ) t0(θR) at each value
of θR in eq 56 until we have for the high shoulder side of
�dir(θR,t)

The equations in section 2 were then evaluated using
numerical techniques that have been described previously, e.g.,
refs 1 and 2.

Figure 2. Contour plot of σ(θR,t). The values of the 10 contours are
9 × 10-12 (9 × 10-12) 9 × 10-11 a0

2 Eh
2 sr-1. The red curve, called

CCT in the text, which is not a contour, approximately separates the
direct and delayed scattering in the (θR,t) plane.

F(E) ) 1

2√2π
g(E) exp{i[ki(E)zi + kf(E)zf]} (51)

g(E) ≡ g(M, E0, σ, E) ) exp(-Ej2) ∑
m)0

M/2
Ej2m

m!
(52)

Ej2 ) 1
2

(E - E0)
2σ2 (53)

Figure 3. Plot of the distributed approximating function(al), g(E) vs
E. It is defined by eq 52 with parameters of M ) 2000, E0 ) 1.90 eV,
and σ ) 100 eV-1. The dashed line indicates that g(E) ) 0.5 for E )
2.35 eV.

�del(θR, E ) Ecut(θR)) ) g(E ) Ecut(θR)) ) 0.5 (54)

g(t) ≡ g(M, t0, F, t) ) exp(- tj2) ∑
m)0

M/2
tj2m

m!
(55)

tj2 ) 1
2

(t - t0)
2F2 (56)

�dir(θR, t ) tcut(θR)) ) g(t ) tcut(θR)) ) 0.5 (57)
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4. Results

This section presents our results using the theory developed
in section 2. Most of the results will be displayed graphically.
It is helpful to remember that direct and delayed DCSs with an
overbar, i.e., σjdir,del(θR,E), have used CCT filtering in their
construction, whereas angular distributions without an overbar,
i.e., σdir,del(θR,t), have employed CCE filtering.

A. Full and Nearside-Farside Differential Cross Sections
in the Energy Domain. Parts a-c of Figure 4 show perspective
plots of σ(θR,E) sin θR, σN(θR,E) sin θR and σF(θR,E) sin θR,
respectively, using eqs 1-6. The DCSs have been multiplied
by sin θR in order to contain large features in the scattering
close to θR ) 0° and θR ) 180°. Note that the relation between
σN(θR,E), σF(θR,E), and σ(θR,E) is readily obtained from eqs 2,
3, and 6 and is called the fundamental NF identity for cross
sections.57 It is given by

The results in Figure 4 are similar to those reported earlier
in Figure 1 of ref 2 and the same comments apply. Briefly, the
backward scattering is N dominated, whereas the pronounced

oscillations as a function of θR in the forward scattering are
caused by interference of the more slowly varying N and F
subamplitudes. The forward scattering at E ) 2.00 eV has been
analyzed in detail using semiclassical techniques in refs 51, 53,
54, 56, and 64 where the oscillations have been proven to be
part of a forward glory. At large angles, Figure 4 shows there
are slow undulations in σ(θR,E) sin θR as a function of E. Similar
undulations occur in σN(θR,E) sin θR, and so they do not arise
from NF interference. It has been suggested that the origin of
these undulations is interference between contributions to the
overall reaction from quantized transition states.80 The scattering
at 180° for σ(θR,E) cannot be seen in Figure 4; we will examine
it in more detail in section 4D.

Figure 4. Perspective plots of (a) σ(θR,E) sin θR, (b) σN(θR,E) sin θR,
and (c) σF(θR,E) sin θR vs θR and E.

σ(θR, E) ) σN(θR, E) + σF(θR, E) + 2[σN(θR, E) ×

σF(θR, E)]1/2 cos[arg fN(θR, E) - arg fF(θR, E)] (58)

Figure 5. LAM contour plots for (a) LAM(θR,E). The red curve
indicates the location of the center of the trench in panel b, (b)
LAMN(θR,E). The red curve indicates the location of the center of the
trench, and (c) LAMF(θR,E). The values of the 27 contours in each
panel are -39 (3) 39.
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Next we consider how to define a cut-curve for σ(θR,E) or
σN,F(θR,E) in order to filter (bisect) f(θR,E) into a “direct” part,
which is the energy-domain analogue of the time-direct scat-
tering, plus a “delayed” part, which is the energy-domain
analogue of the time-delayed scattering. On general grounds,
we expect scattering into backward angles to correspond to a
direct mechanism, with scattering into forward angles corre-
sponding to a delayed mechanism. Unfortunately when we
examine Figure 4, there is no obvious feature in σ(θR,E) or
σN,F(θR,E) that lets us define a dynamically meaningful cut-
curve with the desired property. However, we will see in the
next section that the situation is different when we examine
plots of LAM(θR,E) and LAMN,F(θR,E).

B. Full and Nearside-Farside Local Angular Momenta
in the Energy Domain. Parts a-c of Figure 5 show contour
plots of LAM(θR,E), LAMN(θR,E), and LAMF(θR,E) respec-
tively, using eqs 7 and 8. In contrast to the corresponding
contour plot of σN(θR,E) in Figure 4b, we now see a distinctive,
well-defined, feature in LAMN(θR,E), namely, a pronounced
negative trench starting at (θR ≈ 180°,E ) 1.71 eV) and moving
through the (θR,E) plane to (θR ≈ 0°,E ) 2.50 eV). This trench,
which bisects the (θR,E) plane, is seen very clearly in the
perspective view of LAMN(θR,E) in Figure 6.

We now use the center of the trench to define, by eye, a cut-
curve, CCE, to approximately separate the two reaction mech-
anisms, which are the energy-domain analogues of the time-
direct and time-delayed scattering. CCE is drawn as a red curve
in Figure 5b, where it is superimposed on the contour plot of
LAMN(θR,E). The full LAM(θR,E), which is N dominated, is
seen to exhibit a similar dynamical feature in Figure 5a; CCE is
again superimposed on its contour plot as a red curve. The cut-
curve drawn in parts a and b of Figure 5 is the same as the one
we used in our discussion of Figure 1 (where it was also drawn
as a red curve). We examine the dynamical consequences of
using CCE to filter the reaction mechanisms in the next section.

Our results in Figure 5 for the trench and CCE are generally
similar to those we reported earlier in Figure 10 of ref 2, with
an important exception. Previously the trench in the contour
plot of LAMN(θR,E) became a ridge for a narrow range of
energies, E ≈ 2.05-2.20 eV, giving rise to a “trench-ridge”
effect rather than a “trench” effect. Evidently, the DCS and LAM
calculations in refs 1 and 2 and those in the present paper
provide an example where the full and N,F local angular
momenta are more sensitive to small changes in the numerical
values of the scattering matrix elements than are the full and
N,F cross sections; this sensitivity of LAMs has been pointed
out before.49

Finally, it should be noted that the relation between
LAMN(θR,E), LAMF(θR,E), and LAM(θR,E) is given by the
fundamental NF identity for local angular momenta, which can
be written in the form57

where the NF term C(θR,E) is defined explicitly in ref 57. The
properties of this identity have been examined in detail57 at E
) 2.00 eV, making use of the concept of a CLAM (cross section
× LAM) plot.

C. Direct and Delayed Angular Distributions in the Time
Domain Obtained by CCE Filtering. Having defined CCE in
section 4B, we now follow the theory of section 2C to filter the
direct and delayed scattering amplitudes in the energy domain,
which we then map to the time domain by a half-Fourier

transform; see eqs 9, 10, 18-21, and 26. Figure 7 shows
perspective plots of σ(θR,t) sin θR, σdir(θR,t) sin θR, and σdel(θR,t)
sin θR for t ) 0 fs to t ) 123 fs. The angular distributions have
been multiplied by sin θR in order to contain large features in
the scattering close to θR ) 0° and θR ) 180°.

Figure 7a shows that two mechanisms contribute to the
reaction:1,23,24 direct scattering which results in a large peak in
the backward angular region, and delayed scattering which
causes a large oscillatory peak in the forward region after a
delay of about 25 fs. NF analysis of the time-dependent angular

LAM(θR, E)σ(θR, E) ) LAMN(θR, E)σN(θR, E) +
LAMF(θR, E)σF(θR, E) + C(θR, E) (59)

Figure 6. Perspective plot of LAMN(θR,E) vs θR and E.

Figure 7. Perspective plots of (a) σ(θR,t) sin θR, (b) σdir(θR,t) sin θR,
and (c) σdel(θR,t) sin θR vs θR and t.
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distributions in ref 1 showed that the forward angle oscillations
arise from NF interference. It is likely that these oscillations
can be interpreted as a glory, although it would be necessary to
carry out a uniform semiclassical analysis to prove this
interpretation. We can see that the two mechanisms are not
disjoint; rather there is interference between them. Note also
that Figure 2 is a contour plot of Figure 7a.

Parts b and c of Figure 7 show that CCE filtering has
approximately separated the two time-distinct mechanisms. This
is an important finding because it demonstrates that the location
of the center of the trench in LAMN(θR,E) (used to filter f(θR,E))
has successfully identified the analogues of the direct and
delayed mechanisms in the energy domain without first examin-
ing the properties of σ(θR,t). It also justifies our use of the labels
“direct” and “delayed” from section 2C onward.

D. Direct and Delayed Differential Cross Sections in the
Energy Domain Obtained by CCT Filtering. We now consider
the reverse process: How to define a cut-curve CCT in the (θR,t)
plane in order to approximately separate f(θR,t) into two
mechanisms? Then we map fj dir(θR,t) and fj del(θR,t) to the energy
domain by the inverse Fourier transform (34) to give fj dir(θR,E)
and fj del(θR,E), respectively. Our results in sections 4B and 4C
using the CCE filter allow us to remove some of the ambiguity
in the specification of CCT. (cf. ref 24 in which a cut-curve is
found by trial and error methods applied to the full angular
distribution, σ(θR,t)).

The CCT we use is one we displayed earlier in our discussion
of Figure 2, where it is drawn as a red curve. At large angles,
it can be seen that CCT follows the deepest (interference) trench
between the direct and delayed scattering; it then moves through
the (θR,t) plane to (θR ) 0°, t ) 0 fs). The cut-curve used in
Figure 3 of ref 24 or Figure 1 of ref 31 is similar to CCT except
that it lies closer to the direct angular distribution at large angles
and to the delayed angular distribution at small angles.

Parts a-c of Figure 8 show perspective plots of σj(θR,E) sin
θR, σjdir(θR,E) sin θR, and σjdel(θR,E) sin θR, respectively, using
eqs 39, 41, and 43. Note that the energy scale in Figure 8 goes
to E/eV ) 2.30 rather than E/eV ) 2.50 as in Figures 1 and
4-6. This is because the inverse Fourier transform (34) becomes
numerically unstable when |F(E)| is small. For example, at E
) 2.50 eV, we have |F(E)| ) 2.6 × 10-5.

We note first that Figure 8a for σj(θR,E) sin θR is essentially
the same as Figure 4a, which displays σ(θR,E) sin θR; this
agreement provides a valuable check on the accuracy of our
numerical procedures for the half-Fourier transform and its
inverse. Second, parts b and c of Figure 8 show that the CCT

filtering has produced direct and delayed DCSs in the energy
domain which are consistent with Figure 1 when σ(θR,E) is cut
along CCE.

The scattering at θR ) 180° is not visible in Figure 8. It is
displayed in Figure 9 which plots σj(180°,E), σjdir(180°,E), and
σjdel(180°,E) for 1.52 eV e E e 2.40 eV, as well as σ(180°,E)
for 1.52 eV e E e 2.50 eV. We see that σj(180°,E) and
σ(180°,E) agree closely, which provides another important check
on our numerics. σj(180°,E) possesses nine peaks and nine dips,
and it is evident that this structure arises from interference
between the direct and delayed mechanisms (i.e., fj dir(180°,E)
and fj del(180°,E)), with the direct scattering being the dominant
contributor. Note that σjdir(180°,E) possesses weak undulations
at higher values of E. The results in Figure 9 are consistent
with the conclusions of ref 24 which uses a different CCT.

E. Nearside Scattering in the Energy Domain: Direct and
Delayed Differential Cross Sections and Local Angular

Momenta Obtained by CCT Filtering. It was emphasized in
section 4B that the nearside scattering in the energy domain is
very important for identifying the direct and delayed mecha-
nisms, and in this section we examine their contribution to the
N DCS. Figure 10 shows perspective plots of σjN(θR,E) sin θR,
σj

N
dir(θR,E) sin θR and σj

N
del(θR,E) sin θR. These plots were

obtained (1) by decomposing f(θR,t) into fN(θR,t) + fF(θR,t) using
eq 16, (2) by filtering fN(θR,t) with CCT to produce fjN

dir(θR,t) +
fN

del(θR,t)ssee eqs 31-33, (3) by applying the inverse half-
Fourier transform (35) to generate fj

N
dir(θR,E) and fj

N
del(θR,E), and

Figure 8. Perspective plots of (a) σj(θR,E) sin θR, (b) σjdir(θR,E) sin
θR, and (c) σjdel(θR,E) sin θR vs θR and E.

Figure 9. Plots of σj(θR,E)(green), σjdir(θR,E)(red), and σjdel(θR,E) (blue)
vs E at θR ) 180° for 1.52 e E /eV e 2.40. Also plotted is σ(θR )
180°,E) (black) for 1.52 e E /eV e 2.50.
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finally (4) the direct, delayed, and full N DCSs are calculated
from eqs 37, 40, and 43.

Figure 10a for σjN (θR,E) sin θR is very similar to σN(θR,E)
sin θR in Figure 4b which verifies the accuracy of our numerical
methods. Parts b and c of Figure 10 show that CCT filtering
has produced direct and delayed N DCSs in the energy domain
which are consistent with σN(θR,E) (or σjN(θR,E)) being cut along
CCE. Note that σjdel(θR,E) in Figure 8c has rapid oscillations in
the forward angle region, whereas σj

N
del(θR,E) in Figure 10c does

not. This demonstrates that F scattering, by interfering with the
N scattering, is responsible for the forward-angle glory oscillations.

Figure 11 presents a more detailed examination at E ) 2.00
eV of the angular dependence of the direct and delayed N DCSs,
as well as the full N DCS. This plot shows there is a minimum
in σjN(θR, 2.00 eV) at θR ≈ 50°, which is very close to the
location of CCE at this energy; see Figure 1. The trough in σjN(θR,
2.00 eV) evidently arises from the interference of fjN

dir(θR, 2.00
eV) with fjN

del(θR, 2.00 eV), since σjN
dir(θR, 2.00 eV) and σjN

del(θR,
2.00 eV) are slowly varying functions of θR around θR ) 50°.
We also see that σjN

dir(θR,2.00 eV) dominates the scattering at
sideward and backward angles, with a steep fall off in the
forward intensity for θR j 30°. In contrast, σj

N
del(θR, 2.00 eV)

shows enhanced forward scattering with relatively little sideward
and backward scattering.

Figure 12 displays graphs of LAMN
dir(θR,E), LAM

N
del(θR,E),

and LAMN(θR,E) versus θR at E ) 2.00 eV using eqs 38 and
44. We see that the trench in LAMN(θR,2.00 eV) at θR ≈ 50°
has been smoothed in both LAMN

dir(θR,2.00 eV) and
LAMN

del(θR, 2.00 eV). At larger angles beyond the trench we
have LAMN(θR, 2.00 eV) ≈ LAMN

dir(θR,2.00 eV) and at smaller
angles LAMN(θR, 2.00 eV) ≈ LAMN

del(θR, 2.00 eV). These
properties are consistent with the behavior of the N DCSs in
Figure 11. Beyond the trench angular region in Figure 12, the
overall trend for the moduli of the three N LAMs is toward
smaller values as θR increases; this is the expected behavior
for N scattering.52 The dashed line in Figure 12, at small values
of θR, indicates where LAMN

dir(θR,2.00 eV) exhibits erratic
oscillatory behavior and is unphysical. Now Figure 11 shows
that σjN

dir(θR, 2.00 eV) is very small in this angular region (where
the time-delayed mechanism is dominant), which means that
fjN

dir(θR, 2.00 eV) is likely to contain increased numerical noise
as a result of the CCT filtering. This numerical noise is passed
on to LAMN

dir(θR,2.00 eV) through the derivative of the phase
of fjN

dir(θR,2.00 eV)- see eq 38.
F. Nearside Scattering in the Energy Domain: Direct and

Delayed Interference Effects in the Trench Feature Belong-
ing to the Local Angular Momentum. We finally study Argand
plots of the scattering subamplitude, fjN(θR,E), and the sub-
subamplitudes, fjN

dir(θR,E) and fjN
del(θR,E) at E ) 2.00 eV in order

to better understand the observation that LAM(θR,E), and
particularly LAMN(θR,E), exhibit a trench around CCE in Figures
5 and 6. Note from eq 40 that

We also recall from eqs 48 and 50 that fN(θR,E) ≡ fjN(θR,E) and
LAMN(θR,E) ≡ LAMN(θR,E), respectively, apart from inevitable

Figure 10. Perspective plots of (a) σjN(θR,E) sin θR, (b) σjN
dir(θR,E) sin

θR, and (c) σjN
del(θR,E) sin θR vs θR and E.

Figure 11. Plots of log σjN(θR,E) (dashed green), log σjN
dir(θR,E) (red),

and log σj
N

del(θR,E) (blue) vs θR at E ) 2.00 eV. Also plotted is log
σN(θR,E ) 2.00 eV) (black) vs θR; it overlaps with the curve for log
σjN(θR,E ) 2.00 eV) on the scale of the drawing.

Figure 12. Plots of LAMN(θR,E) (dashed green), LAMN
dir(θR,E) (red),

and LAMN
del(θR,E) (blue) vs θR at E ) 2.00 eV. The dashed red curve

indicates where LAMN
dir(θR,E ) 2.00 eV) becomes unphysical. Also

plotted is LAMN(θR,E ) 2.00 eV) (black) vs θR; it overlaps with the
curve for LAMN(θR,E ) 2.00 eV) on the scale of the drawing.

fjN(θR, E) ) fjN
dir(θR, E) + fjN

del(θR, E)
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numerical errors associated with the half-Fourier transform and
its inverse. In our computations, we always found that fN(θR,E)
and fjN(θR,E) agreed to within graphical accuracy.

With Mathematica 5.1, an animated movie of Argand plots
for the three subamplitudes has been made at E ) 2.00 eV,
whereby each successive frame corresponds to an increase in
θR of 1°. Figures 13 and 14 show snapshots from the movie for
θR ) 34° (5°) 89°. Examination of the movie and Figures 13
and 14 leads to the following observations (where E ) 2.00
eV in all cases):

fjN
del(θR,E) (blue) spirals inward as θR increases while

fjN
dir(θR,E) (red) spirals out. fjN(θR,E) (black) initially spirals in

until θR ≈ 50°, when it begins to spiral out.
fjN(θR,E) behaves at first like fjN

del(θR,E), i.e., the moduli,
phases, and LAMs are similar. We see that |fjN

dir(θR,E)| is small.
As θR increases, fjN(θR,E) begins to exhibit more of the

characteristics of fjN
dir(θR,E). By θR ≈ 49°, the phase of fjN(θR,E)

has started to “catch up” with the phase of fjN
dir(θR,E). This

results in a more negative value of LAMN(θR,E), since the phase
of fjN(θR,E) decreases faster than previously observed.

By θR ≈ 52°, the phase of fjN(θR,E) has caught up with the
phase of fjN

dir(θR,E). We see that |fjN
dir(θR,E)| and |fjN

del(θR,E)| are
of similar magnitudes.

Next, the phase of fjN(θR,E) overtakes the phase of fjN
dir(θR,E)

and then slows down, with the result that LAMN(θR,E) becomes

less negative. By θR ≈ 89°, fN(θR,E) behaves like fjN
dir(θR,E);

i.e., the moduli, phases, and LAMs are similar. We see that
|fjN

del(θR,E)| is small.
From these observations, we see that the trench structure at

E ) 2.00 eV is caused by a transfer in behavior of fjN(θR,E)
from delayed dynamics to direct dynamics as θR increases. This
is a destructive interference effect which requires the phase of
fjN(θR,E) to decrease faster with respect to θR to overtake the
phase of fjN

dir(θR,E), resulting in a minimum in LAMN(θR,E)
around θR ) 50°.

5. Conclusions

We have presented the results of NF angular distributions
and NF LAM analyses for the H + D2(Vi ) 0, ji ) 0, mi ) 0)
f HD(Vf ) 3, jf ) 0, mf ) 0) + D reaction in the energy and
time domains. Our calculations used a new set of accurate
quantum scattering matrix elements.

We discovered that LAM(θR,E), and in particular
LAMN(θR,E), exhibit a pronounced dynamical feature, namely,
a negative trench that bisects the (θR,E) plane. We used the
location of this trench to design a filter to approximately separate
two reaction mechanisms. Transforming to the time domain
showed that these two reaction mechanisms are the energy-
domain analogues of direct and delayed scattering, which
interfere to produce the trench. This is the first successful

Figure 13. Snapshots from a movie of Argand plots of fjN(θR,E) (black),
fjN

dir(θR,E) (red), and fjN
del(θR,E) (blue) at E ) 2.00 eV. Each solid circle

represents an incremental step in θR of 1°. Each snapshot shows all
increments from θR ) 34° up to θR ) 34°, 39°, 44°, 49°, 54°, and 59°.

Figure 14. Snapshots from a movie of Argand plots of fjN(θR,E) (black),
fjN

dir(θR,E) (red), and fjN
del(θR,E) (blue) at E ) 2.00 eV. Each solid circle

represents an incremental step in θR of 1°. Each snapshot shows all
increments from θR ) 34° up to θR ) 64°, 69°, 74°, 79°, 84°, and 89°.
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filtration of reaction mechanisms carried out directly in the
(θR,E) domain. Our approach also allows us to remove some
(though not all) of the ambiguity in previous definitions of CCT.
We have demonstrated that combining the PWP theory of time
dependent scattering with NF and LAM analyses provides a
powerful tool for filtering mechanisms in quantum reactive
scattering.
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